Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7185, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938548

RESUMO

Condensed matter physics has often provided a platform for investigating the interplay between particles and fields in cases that have not been observed in high-energy physics. Here, using angle-resolved photoemission spectroscopy, we provide an example of this by visualizing the electronic structure of a noncentrosymmetric magnetic Weyl semimetal candidate NdAlSi in both the paramagnetic and ferrimagnetic states. We observe surface Fermi arcs and bulk Weyl fermion dispersion as well as the emergence of new Weyl fermions in the ferrimagnetic state. Our results establish NdAlSi as a magnetic Weyl semimetal and provide an experimental observation of ferrimagnetic regulation of Weyl fermions in condensed matter.

2.
Nat Commun ; 14(1): 1945, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029104

RESUMO

In crystalline materials, electron-phonon coupling (EPC) is a ubiquitous many-body interaction that drives conventional Bardeen-Cooper-Schrieffer superconductivity. Recently, in a new kagome metal CsV3Sb5, superconductivity that possibly intertwines with time-reversal and spatial symmetry-breaking orders is observed. Density functional theory calculations predicted weak EPC strength, λ, supporting an unconventional pairing mechanism in CsV3Sb5. However, experimental determination of λ is still missing, hindering a microscopic understanding of the intertwined ground state of CsV3Sb5. Here, using 7-eV laser-based angle-resolved photoemission spectroscopy and Eliashberg function analysis, we determine an intermediate λ=0.45-0.6 at T = 6 K for both Sb 5p and V 3d electronic bands, which can support a conventional superconducting transition temperature on the same magnitude of experimental value in CsV3Sb5. Remarkably, the EPC on the V 3d-band enhances to λ~0.75 as the superconducting transition temperature elevated to 4.4 K in Cs(V0.93Nb0.07)3Sb5. Our results provide an important clue to understand the pairing mechanism in the kagome superconductor CsV3Sb5.

3.
Inorg Chem ; 61(42): 16632-16638, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36239459

RESUMO

Single crystals and polycrystalline samples of Ho5Pd4Sn12 have been synthesized using flux and arc-melting methods, respectively. Single-crystal X-ray diffraction studies indicate that Ho5Pd4Sn12 crystallizes in a tetragonal structure (I4/m) at room temperature and transforms into a monoclinic structure (C2/m) below ∼194 K. This structural transition is further supported by a transmission electron microscopy study and an anomaly at ∼194 K in the specific heat data. Temperature-dependent resistivity data also show a kink around the structural transition temperature. Ho5Pd4Sn12 is antiferromagnetically ordered below 7 K. Ho5Pd4Sn12 shows magnetic anisotropy, and the isothermal magnetization curve (H⊥c) at 2 K exhibits a field-induced magnetic phase transition around 22.8 kOe.

4.
Nat Commun ; 13(1): 273, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022418

RESUMO

The Kagome superconductors AV3Sb5 (A = K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been detected in AV3Sb5. High-precision electronic structure determination is essential to understand its origin. Here we unveil electronic nature of the CDW phase in our high-resolution angle-resolved photoemission measurements on KV3Sb5. We have observed CDW-induced Fermi surface reconstruction and the associated band folding. The CDW-induced band splitting and the associated gap opening have been revealed at the boundary of the pristine and reconstructed Brillouin zones. The Fermi surface- and momentum-dependent CDW gap is measured and the strongly anisotropic CDW gap is observed for all the V-derived Fermi surface. In particular, we have observed signatures of the electron-phonon coupling in KV3Sb5. These results provide key insights in understanding the nature of the CDW state and its interplay with superconductivity in AV3Sb5 superconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...